349 research outputs found

    Theory of transient spectroscopy of multiple quantum well structures

    Full text link
    A theory of the transient spectroscopy of quantum well (QW) structures under a large applied bias is presented. An analytical model of the initial part of the transient current is proposed. The time constant of the transient current depends not only on the emission rate from the QWs, as is usually assumed, but also on the subsequent carrier transport across QWs. Numerical simulation was used to confirm the validity of the proposed model, and to study the transient current on a larger time scale. It is shown that the transient current is influenced by the nonuniform distribution of the electric field and related effects, which results in a step-like behavior of the current. A procedure of extraction of the QW emission time from the transient spectroscopy experiments is suggested.Comment: 5 pages, 4 figures, to be published in J. Appl. Phy

    Electrical excitation of shock and soliton-like waves in two-dimensional electron channels

    Full text link
    We study electrical excitation of nonlinear plasma waves in heterostructures with two-dimensional electron channels and with split gates, and the propagation of these waves using hydrodynamic equations for electron transport coupled with two-dimensional Poisson equation for self-consistent electric potential. The term related to electron collisions with impurities and phonons as well as the term associated with viscosity are included into the hydrodynamic equations. We demonstrate the formation of shock and soliton-like waves as a result of the evolution of strongly nonuniform initial electron density distribution. It is shown that the shock wave front and the shape of soliton-like pulses pronouncedly depend on the coefficient of viscosity, the thickness of the gate layer and the nonuniformity of the donor distribution along the channel. The electron collisions result in damping of the shock and soliton-like waves, while they do not markedly affect the thickness of the shock wave front.Comment: 9 pages, 11 figure

    Monte Carlo study on anomalous carrier diffusion in inhomogeneous semiconductors

    Get PDF
    We perform ensemble Monte Carlo simulations of electron diffusion in high mobility inhomogeneous InAs layers. Electrons move ballistically for short times while moving diffusively for sufficiently long times. We find that electrons show anomalous diffusion in the intermediate time domain. Our study suggests that electrons in inhomogeneous InAs could be used to experimentally explore generalized random walk phenomena, which, some studies assert, also occur naturally in the motion of animal foraging paths

    Electron beam induced current in InSb-InAs nanowire type-III heterostructures

    Get PDF
    InSb-InAs nanowire heterostructure diodes investigated by electron beam induced current (EBIC) demonstrate an unusual spatial profile where the sign of the EBIC signal changes in the vicinity of the heterointerface. A qualitative explanation confirmed by theoretical calculations is based on the specific band diagram of the structure representing a type-III heterojunction with an accumulation layer in InAs. The sign of the EBIC signal depends on the specific parameters of this layer. In the course of measurements, the diffusion length of holes in InAs and its temperature dependence are also determined

    Electrical properties and band diagram of InSb-InAs nanowire type-III heterojunctions

    Get PDF
    The electrical properties of nanowire-based n-InSb-n-InAs heterojunctions were investigated theoretically and experimentally. Analysis of the current-voltage characteristics showed that the current through the heterojunction is caused mostly by generation-recombination processes in the InSb and at the heterointerface. Due to the partially overlapping valence band of InSb and the conduction band of InAs, the second process is fast and activationless. Theoretical analysis showed that, depending on the heterojunction parameters, the flux of non-equilibrium minority carriers may have a different direction, explaining the experimentally observed non-monotonic coordinate dependence of the electron beam induced current

    Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field

    Full text link
    We study the effects of dissipation on electron transport in a semiconductor superlattice with an applied bias voltage and a magnetic field that is tilted relative to the superlattice axis.In previous work, we showed that although the applied fields are stationary,they act like a THz plane wave, which strongly couples the Bloch and cyclotron motion of electrons within the lowest miniband. As a consequence,the electrons exhibit a unique type of Hamiltonian chaos, which creates an intricate mesh of conduction channels (a stochastic web) in phase space, leading to a large resonant increase in the current flow at critical values of the applied voltage. This phase-space patterning provides a sensitive mechanism for controlling electrical resistance. In this paper, we investigate the effects of dissipation on the electron dynamics by modifying the semiclassical equations of motion to include a linear damping term. We demonstrate that even in the presence of dissipation,deterministic chaos plays an important role in the electron transport process. We identify mechanisms for the onset of chaos and explore the associated sequence of bifurcations in the electron trajectories. When the Bloch and cyclotron frequencies are commensurate, complex multistability phenomena occur in the system. In particular, for fixed values of the control parameters several distinct stable regimes can coexist, each corresponding to different initial conditions. We show that this multistability has clear, experimentally-observable, signatures in the electron transport characteristics.Comment: 14 pages 11 figure

    Gain in quantum cascade lasers and superlattices: A quantum transport theory

    Full text link
    Gain in current-driven semiconductor heterostructure devices is calculated within the theory of nonequilibrium Green functions. In order to treat the nonequilibrium distribution self-consistently the full two-time structure of the theory is employed without relying on any sort of Kadanoff-Baym Ansatz. The results are independent of the choice of the electromagnetic field if the variation of the self-energy is taken into account. Excellent quantitative agreement is obtained with the experimental gain spectrum of a quantum cascade laser. Calculations for semiconductor superlattices show that the simple 2-time miniband transport model gives reliable results for large miniband widths at room temperatureComment: 8 Pages, 4 Figures directly included, to appear in Physical Review

    Theory of Transmission through disordered superlattices

    Get PDF
    We derive a theory for transmission through disordered finite superlattices in which the interface roughness scattering is treated by disorder averaging. This procedure permits efficient calculation of the transmission thr ough samples with large cross-sections. These calculations can be performed utilizing either the Keldysh or the Landauer-B\"uttiker transmission formalisms, both of which yield identical equations. For energies close to the lowest miniband, we demonstrate the accuracy of the computationally efficient Wannier-function approximation. Our calculations indicate that the transmission is strongly affected by interface roughness and that information about scale and size of the imperfections can be obtained from transmission data.Comment: 12 pages, 6 Figures included into the text. Final version with minor changes. Accepted by Physical Review
    corecore